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1 Introduction

Threshold resummation, which deals with the resummation to all orders of perturbation

theory of the large logarithmic corrections arising from the incomplete cancellation of soft

and collinear gluons at the edge of phase space, is by now a well developed topic [1, 2]

in perturbative QCD. Recently, some renewed interest has been expressed [3–7] in the

resummation of those logarithmically enhanced terms which are suppressed by some power

of (1 − x) for x → 1 in momentum space (or by some power of 1/N , N → ∞ in moment

space) with respect to the leading terms. In particular, in [4] a very simple form was

obtained for the structure of threshold resummation at all orders in (1 − x) in the large–

β0 limit in momentum space, and a straightforward generalization of the large–β0 result

to finite β0 was suggested. The result in [4] was obtained by working at the level of

the momentum space physical evolution kernels (or ‘physical anomalous dimensions’, see

e.g. [8–11]), which are infrared and collinear safe quantities describing the physical scaling

violation, where the structure of the result appears to be particularly transparent. The
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purpose of this note is to check the finite β0 conjecture of [4] by comparing with the three-

loop calculations of [12, 13] for the F2 and F3 non-singlet structure functions. It is found

that the conjecture in the simplest form (section 2) suggested in [4] does not actually work,

neither do two other plausible generalizations (sections 3 and 4). We conclude, in agreement

with the analysis in [7], that threshold resummation probably does not work exactly at the

next-to-leading order in 1−x. Neverheless, we show these ansaetze do suggest some correct

predictions, both at the leading logarithmic (LL) order (for each color factor separately)

at two and three loop, and at next-to-next-to-leading logarithmic (NNLL) order for the

peculiar color factor C3
F at three loop. A comparaison with the closely related work of [6] is

also performed in section 5, and in the conclusion (section 6) we comment on the possible

structure of a threshold resummation violating piece. The results of some calculations

involving convolutions are presented in more details in four appendix.

2 The conjecture

The scale-dependence of the (flavour non-singlet) deep inelastic “coefficient function”

C2(x,Q2, µ2
F ) corresponding to the non-singlet F2(x,Q2) structure function (F2(x,Q2)/x =

C2(x,Q2, µ2
F ) ⊗ q2(x, µ2

F ), where q2(x, µ2
F ) is the quark distribution) can be expressed in

terms of C2(x,Q2, µ2
F ) itself, yielding the following evolution equation (see e.g. refs. [8–11]):

dC2(x,Q2, µ2
F )

d ln Q2
=

∫ 1

x

dz

z
K(x/z,Q2) C2(z,Q2, µ2

F ) , (2.1)

where µF is the factorization scale (we assume for definitness the MS factorization scheme

is used). K(x,Q2) is the momentum space physical evolution kernel, or physical anomalous

dimension; it is independent of the factorization scale and renormalization-scheme invari-

ant. In [14], using standard results [1, 2] of Sudakov resummation in moment space, the

result for the leading contribution to this quantity in the x → 1 limit was derived:

K(x,Q2) ∼
J

(
(1 − x)Q2

)

1 − x
+

d ln
(
F(Q2)

)2

d ln Q2
δ(1 − x) , (2.2)

where J (k2), the ‘physical Sudakov anomalous dimension’, is defined in Eq. (2.10) be-

low. eq. (2.2) shows that threshold resummation takes a very simple form directly in

momentum-space when dealing with the physical evolution kernel: J
(
(1 − x)Q2

)
/(1 − x)

is the leading term in the expansion of the physical momentum space kernel K(x,Q2) in

the x → 1 limit with (1 − x)Q2 fixed, and all threshold logarithms are absorbed into the

single scale (1−x)Q2. The term proportional to δ(1−x) is comprised of purely virtual cor-

rections associated with the quark form factor F(Q2). This term is infrared divergent, but

the singularity cancels exactly upon integrating over x with the divergence of the integral

of J
(
(1 − x)Q2

)
/(1 − x) near x → 1.

To derive eq. (2.2), one starts from the standard threshold resummation formula for

the moment space coefficient function

Ĉ2(Q
2, N, µ2

F ) =

∫ 1

0
dxxN−1C2(x,Q2, µ2

F ) , (2.3)
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namely, for N → ∞:

Ĉ2(Q
2, N, µ2

F ) ∼ g(Q2, µ2
F ) exp[E(Q2, N, µ2

F )] , (2.4)

with the Sudakov exponent given by

E(Q2, N, µ2
F ) =

∫ 1

0
dx

xN−1 − 1

1 − x

[∫ (1−x)Q2

µ2
F

dk2

k2
A

(
as(k

2)
)

+ B
(
as((1 − x)Q2)

)
]

, (2.5)

where (as ≡ αs

4π
)

A(as) =
∞∑

i=1

Aia
i
s (2.6)

is [15] the universal “cusp” anomalous dimension, and

B(as) =
∞∑

i=1

Bia
i
s (2.7)

is the standard final state “jet function” anomalous dimension, whereas g(Q2, µ2
F ) collects

the residual constant (i.e. N -independent) terms not included in E(Q2, N, µ2
F ). It should

be noted that both A(as) and B(as) are renormalization scheme-dependent quantities.

Taking the ln Q2 derivative of eq. (2.4) we get the large-N resummation formula [16, 17]

for the moment space “physical evolution kernel” K̂(Q2, N) ≡
d ln Ĉ2(Q2,N,µ2

F )

d ln Q2 :

K̂(Q2, N) ∼

∫ 1

0
dx

xN−1 − 1

1 − x
J [(1 − x)Q2] + H(Q2) (2.8)

where

H(Q2) =
d ln g(Q2, µ2

F )

d ln Q2
, (2.9)

and

J (k2) = A
(
as(k

2)
)

+
dB

(
as(k

2)
)

d ln k2
(2.10)

= A
(
as(k

2)
)

+ β
(
as(k

2)
) dB

(
as(k

2)
)

das
,

is a “physical” (i.e. scheme-independent) Sudakov anomalous dimension, depending upon

the “jet scale” (1− x)Q2 in eq. (2.8). Merging together the N -independent (−1) contribu-

tion sitting inside the integral in (2.8) with H(Q2), one arrives at:

K̂(Q2, N) ∼

∫ 1

0
dxxN−1J [(1 − x)Q2]

1 − x
+

[
H(Q2) −

∫ Q2

0

dk2

k2
J (k2)

]
. (2.11)

Inverting the moments in eq. (2.11), and using the relation [18]

H(Q2) −

∫ Q2

0

dk2

k2
J (k2) =

d ln
(
F(Q2)

)2

d ln Q2
, (2.12)
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one finally obtains the corresponding momentum space relation eq. (2.2).

Eq. (2.2) gives a strong incentive to look for a systematic expansion for x → 1 of

K(x,Q2) in powers of 1 − x, or, more conveniently, in powers of

r ≡
1 − x

x
(2.13)

at fixed jet mass

W 2 ≡ r Q2 . (2.14)

The simplest guess would be:

K(x,Q2) =
1

r
J

(
W 2

)
+

d ln
(
F(Q2)

)2

d ln Q2
δ(1 − x) + J0

(
W 2

)
+ O (r) , (2.15)

where (barring the virtual contribution) the coefficients J
(
W 2

)
and J0

(
W 2

)
are renor-

malization group and scheme invariant ‘effective charges’ [9], the physical ‘jet’ Sudakov

anomalous dimensions, functions of a single variable-the jet mass W 2, that can be com-

puted order by order in as(W
2). This ansatz has been checked [4] in the large–β0 limit.1

A more general ansatz [4] could be:

K(x,Q2) =
1

r
J

(
W 2

)
+

d ln
(
F(Q2)

)2

d ln Q2
δ(1 − x)

+
[
J̄0

(
W 2

)
ln(1 − x) + J0

(
W 2

)]
+ O

(
r ln2 r

)
. (2.16)

Eq. (2.16) involves an ‘explicit’ ln(1 − x) factor at O(r0), as suggested by the expansion

of the standard splitting function (see eq. (3.28) below). It turns out that the ansatz

eq. (2.15), and even eq. (2.16), do not work at finite β0. An alternative ansatz which

involves two different scales beyond 1/r order is suggested below (eq. (4.1)), but does not

work either.

3 Checking the ansatz

(1) O(a2

s
) exact result: let us first give the exact result for K(x,Q2) as x → 1 at O(a2

s).

One starts from the general relation [11]

K(x,Q2) = P (x, as) + β(as)(d1(x) + d2(x) as + d3(x) a2
s + . . .) (3.1)

where as ≡ as(Q
2),

P (x, as) =

∞∑

i=0

Pi(x)ai+1
s (3.2)

is the standard splitting function,

β(as) =
das

d ln Q2
= −β0 a2

s − β1 a3
s − β2 a4

s + . . . (3.3)

1K(x, Q2) defined here is 1/x × the K(x, Q2) as defined in [4].
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is the beta function (with β0 = 11
3 CA − 2

3nf ), and di(x)’s are the expansion coefficients of

the formal logarithmic derivative (in the sense of convolutions) d ln C2/das. Namely, setting

C2(x,Q2, µ2
F = Q2) = δ(1 − x) +

∞∑

i=1

ci(x) ai
s , (3.4)

we have

d1(x) = c1(x) (3.5)

d2(x) = 2c2(x) − c⊗2
1 (x)

d3(x) = 3c3(x) − 3c2(x) ⊗ c1(x) + c⊗3
1 (x) .

Expanding eq. (3.1) to O(a2
s), one gets:

K(x,Q2) = as P0(x) + a2
s[P1(x) − β0 c1(x)] + . . . . (3.6)

Now for x → 1, we have:

P0(x) ∼
A1

r
+ Bδ

1 δ(1 − x) + C1 ln(1 − x) + D1 + . . . (3.7)

with A1 = 4CF , Bδ
1 = 3CF , C1 = 0 and D1 = 0,

P1(x) ∼
A2

r
+ Bδ

2 δ(1 − x) + C2 ln(1 − x) + D2 + . . . (3.8)

with [19] A2 = (16
3 − 8ζ2)CF CA + 20

3 CF β0 (where we have expressed for convenience nf in

term of β0 and CA), C2 = A2
1, and [20, 21]

D2 = A1(B
δ
1 − β0) . (3.9)

Moreover:

c1(x) ∼ CF

[
4 ln(1 − x) − 3

1 − x
− (9 + 4ζ2)δ(1 − x) − 4 ln(1 − x) + 14 + . . .

]
, (3.10)

where the lnp(1−x)
1−x

terms should be interpreted from now on as +-distributions, which makes

the coefficient of the δ(1 − x) term finite. Hence, in an expansion in 1/r = 1/(1 − x) − 1,

we get (skipping the δ(1 − x) term):

c1(x) ∼ CF [
4 ln(1 − x) − 3

r
+ 11 + . . .] . (3.11)

We note that in an expansion in 1/r, there is no logarithmic term at O(r0) order in c1(x),

a consequence of the fact [3] that the coefficients of the ln(1 − x)/(1 − x) and ln(1 − x)

leading logarithms in eq. (3.10) are equal and opposite. We thus get (skipping the δ(1−x)

term)

K(x,Q2) ∼
1

r
[A1 as + a2

s(−4CF β0 ln(1 − x) + A2 + 3CF β0) + . . .]

+a2
s[C2 ln(1 − x) + D2 − 11CF β0] + . . . (3.12)
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i.e.

K(x,Q2) ∼
1

r
[A1 as + a2

s(−A1β0 ln(1 − x) + A2 + 3CF β0) + . . .]

+a2
s[A

2
1 ln(1 − x) + A1B

δ
1 − (A1 + 11CF )β0] + . . . (3.13)

where we have replaced 4CF by A1 in the coefficient of the ln(1−x) term on the first line.

(2) Ansatz: let us first check the simpler ansatz eq. (2.15). Using the well-known rela-

tions (following from renormalization group invariance):

J
(
W 2

)
= j1as + a2

s

(
− j1β0 ln

(
W 2

Q2

)
+ j2

)

+a3
s

[
j1β

2
0 ln2

(
W 2

Q2

)
− (j1β1 + 2β0 j2) ln

(
W 2

Q2

)
+ j3

]
+ . . . (3.14)

and

J0

(
W 2

)
= j02a

2
s + a3

s

(
− 2j02β0 ln

(
W 2

Q2

)
+ j03

)
+ . . . . (3.15)

as well as the expansion:

ln(
W 2

Q2
) = ln r = ln(1 − x) + (1 − x) + . . . , (3.16)

the ansatz eq. (2.15) yields at O(a2
s) order:

K(x,Q2)|ansatz ∼
1

r
[j1 as + a2

s(−β0j1 ln(1 − x) + j2) + . . .] + a2
s(j02 − j1β0) + . . . (3.17)

We note that J0

(
W 2

)
must be a O(a2

s) quantity to match eq. (3.12), where the subleading

O(r0) ‘next-to-eikonal’ term starts at O(a2
s) (this follows from the fact that C1 = D1 = 0).

Comparing with eq. (3.13), one finds (as expected) that the leading O(1/r) term matches

the corresponding one in (3.13), with the identifications:

j1 = A1 (3.18)

j2 = A2 + 3β0CF ,

which implies (see eq. (2.10)) B1 = −3CF . Furthermore at the next-to-leading O(r0)

order, the non-logarithmic contribution in eq. (3.17) matches the corresponding one in

eq. (3.13) provided:

j02 = A1B
δ
1 − 11CF β0 . (3.19)

We also note the j1β0 term on the second line of eq. (3.17), which arises as a ‘remnant’

from the expansion of the ln(W 2/Q2) term occuring at O(a2
s) (eq. (3.14)) in the leading

1/r part of the ansatz, matches the A1β0 term in D2 in eq. (3.12). Eq. (3.19) shows that

J0

(
W 2

)
is not a total derivative (contrary to the situation which prevails [4] at large β0),

but suggests that it can be written as the sum of two components:

J0

(
W 2

)
= J̃0

(
W 2

)
+

dB0

d ln W 2
(3.20)
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where

J̃0

(
W 2

)
= j̃02a

2
s + . . . , (3.21)

with j̃02 = A1B
δ
1, is non-leading at large β0, and

B0(W
2) = b1as + . . . (3.22)

with b1 = 11CF (in agreement with the large β0 analysis [4]). We note that b1 corresponds

to the contribution of the constant term in the coefficient function (see eq. (3.11)), whereas

j̃02 is contributed by the splitting function.

However, there remains one obvious mismatch: the logarithmic contribution on the

second line of eq. (3.13) is not accounted for by the ansatz eq. (2.15). This mismatch

suggests to try instead the ansatz eq. (2.16), with an explicit ln(1 − x) term. Setting

J̄0

(
W 2

)
= j̄02a

2
s + a3

s(−2j̄02β0 ln(
W 2

Q2
) + j̄03) + . . . (3.23)

the ansatz eq. (2.16) yields at O(a2
s) order:

K(x,Q2)|ansatz ∼
1

r
[j1 as + a2

s(−β0j1 ln(1 − x) + j2) + . . .]

+a2
s[j̄02 ln(1 − x) + (j02 − j1β0)] + . . . (3.24)

Indeed eq. (3.24) matches (3.13) with the identification:

j̄02 = C2 = A2
1 (3.25)

together with eq. (3.19). At O(a2
s) the ansatz thus makes no prediction, but we note that

eq. (3.25) is a consequence of the previously mentioned fact that the coefficients of the

ln(1 − x)/(1 − x) and ln(1 − x) leading logarithms in c1(x) (eq. (3.10)) are equal up to a

sign. Thus, assuming the parameter j1 of the O(1/r) part of the ansatz has been fixed as in

eq. (3.18) to correctly reproduce the ln(1− x)/(1− x) term in c1(x), eq. (3.25) guarantees

the correct coefficient of the ln(1 − x) term in c1(x) is obtained.

The determined value of j̄02 moreover reveals an interesting pattern. It shows that:2

J̄0

(
W 2

)
= C

(
as(W

2)
)

+ O(a3
s) , (3.26)

where

C(as) =

∞∑

i=2

Cia
i
s , (3.27)

is the coefficient of the O(ln(1−x)) term in the expansion of the standard splitting function

P (x, as) =
∑∞

i=0 Pi(x)ai+1
s around x = 1, namely [22] (see eq. (3.7), (3.8) and (3.34)):

P (x, as) =
1

r
A(as) + Bδ(as) δ(1 − x) + [C(as) ln(1 − x) + D(as)] + O(r ln2 r) . (3.28)

2However, since j02 6= D2 (see eq. (3.9) and (3.19)), the analoguous relation J0

`

W 2
´

= D
`

as(W
2)

´

+

O(a3
s) (where D(as) =

P

∞

i=2 Dia
i
s) is not realized. The reason is that, with the definition (2.14) of the W

scale, the ‘remnant’ j1β0 = 4CF β0 on the second line of eq. (3.17), which arises from the factor of x in the

denominator of (2.13), does not match the b1β0 = 11CF β0 term in the last term of eq. (3.12).

– 7 –
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Eq. (2.16) is clearly the analogue of eq. (3.28). Moreover eq. (3.26) is quite analogous to

eq. (2.10), relating the coefficients of the O(1/r) terms in P (x, as) and K(x,Q2), which

shows that

J
(
W 2

)
= A

(
as(W

2)
)

+ O(a2
s) . (3.29)

Actually, since the physical kernel K(x,Q2) differs from the standard splitting function by

a term proportional to the beta function (see eq. (3.1)), one can even state that:

J̄0

(
W 2

)
= C

(
as(W

2)
)

+
dB̄0

(
as(W

2)
)

d ln W 2
, (3.30)

with B̄0(as) = O(a2
s). We shall see in section 5 that this observation makes contact with

the ansatz proposed in [6].

On the other hand, a prediction does arise at O(a3
s) order. One finds:

K(x,Q2)|ansatz ∼
1

r
[j1 as + a2

s(−β0j1 ln(1 − x) + j2)

+a3
s(j1β

2
0 ln2(1 − x) − (j1β1 + 2β0 j2) ln(1 − x) + j3) + . . .]

+a2
s[j̄02 ln(1 − x) + (j02 − j1β0)] + . . .

+a3
s[−2j̄02β0 ln2(1 − x) + (2β0 (j1β0 − j02) + j̄03) ln(1 − x)

+(−j1β1 − 2β0 j2 + j03)] + . . . (3.31)

where the O(r0) leading logarithms in the third and fourth lines of eq. (3.31) come from

the expansion of the ‘explicit’ ln(1 − x) term in eq. (2.16):

J̄0

(
W 2

)
ln(1 − x) = a2

s j̄02 ln(1 − x) + a3
s[−2j̄02β0 ln2(1 − x) + j̄03 ln(1 − x)] + . . . (3.32)

The ansatz eq. (2.16) thus predicts

(i) that the leading O(r0) logarithm at O(a3
s) in K(x,Q2) should be a double loga-

rithm, and

(ii) that its coefficient should be −2j̄02β0 = −2C2β0 = −2A2
1β0, which can be compared

to the O(a3
s) exact result.

(3) O(a3

s
) exact result: expanding eq. (3.1) to O(a3

s) one gets:

K(x,Q2) = as P0(x) + a2
s[P1(x) − β0 c1(x)]

+a3
s[P2(x) − β1 c1(x) − β0 d2(x)] + . . . . (3.33)

Using the x → 1 expansion of the three loop splitting function:

P2(x) ∼
A3

r
+ Bδ

3 δ(1 − x) + C3 ln(1 − x) + D3 + . . . (3.34)

where [20, 21, 23] C3 = 2A1A2, as well as the exact calculations [24, 25] (see also [13]) of the

two loop coefficient function c2(x), one finds eq. (3.33) does yield an expansion of the form of
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0
5
5

C2
F CF β0

ln3(1−x)
1−x

8 8 0 0

ln3(1 − x) −8 −8 0 0
ln2(1−x)

1−x
−18 −18 −2 −2

ln2(1 − x) 60 64 2 2

Table 1. Comparison of some exact and predicted 2-loop logarithmic coefficients for the DIS

structure function. Next-to-eikonal results are in boldface. For each color structure, the left column

contains the exact results, the right column contains the prediction of the single scale ansatz.

eq. (3.31), which matches as expected the leading O(1/r) part (and allows to determine j3).

However, in the O(r0) part, the exact value of the coefficient of the a3
sC

2
F β0 ln2(1−x) term

reveals a discrepancy. Indeed, the latter is provided by the C2
F ln2(1−x) part of d2(x) (there

is no C2
F

ln2(1−x)
1−x

part in d2(x), as correctly predicted by the leading order part of the ansatz),

which is (see appendix B) 24C2
F ln2(1 − x), instead of 2A2

1 ln2(1 − x) = 32C2
F ln2(1 − x)

expected from the ansatz! Equivalently the ansatz would require (given as input the exact

soft part of c1(x) (eq. (3.11)), for which no prediction is made) the C2
F ln2(1 − x) part of

c2(x) to be 64C2
F ln2(1 − x), while the correct result is 60C2

F ln2(1 − x).

However, the ansatz does make a number of correct predictions (see appendix A and

B), arising essentially from the fact that it correctly implies that d2(x) contains less power

of logarithms for a given color factor then c2(x). The resulting necessary cancellations3 in

d2(x) allow to constrain c2(x) given c1(x). The main results are summarized in table (1).

We note that the ansatz correctly predicts the coefficients of the leading logarithms

for a given color factor4 in c2(x), and is also consistent with the general expectation [3]

that these coefficients are equal and opposite for the leading lnp(1−x)
1−x

and lnp(1 − x) terms

within each color structure.

Another observation: looking at the terms in eq. (3.33) which contain an explicit β1

factor, one finds they are only two at O(a3
s) order: 1) the β1c1(x) term and 2) a less obvious

contribution contained in P2(x) (eq. (3.34)). Indeed we have [20, 21]:

D3 = A1(B
δ
2 − β1) + A2(B

δ
1 − β0) . (3.35)

Note there is an additional β1 factor contained in D3. At the O(r0) level, these two terms

proportional to β1 thus contribute a non-logarithmic piece −(11CF + A1)β1. It turns

out that this structure is nicely accounted for by assuming that it arises from the total

3The fact that the lnk(1−x)
1−x

terms occuring in cl(x) at leading O(1/r) order cancel for l + 1 ≤ k ≤ 2l − 1

in the l-loop combination dl(x) (such as d2(x), d3(x)) which enter K(x,Q2) at O(al
s) order was already

noticed (in moment space) in [11]. The present work extend this remark to O(r0) order.
4For leading logarithms, the CF (CA, nf ) color factors combine into a single CF β0 color factor.
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derivative on the right hand side of eq. (3.20). Indeed, setting:

B0(W
2) = b1as + a2

s

(
− b1β0 ln

(
W 2

Q2

)
+ b2

)

+a3
s

[
b1β

2
0 ln2

(
W 2

Q2

)
− (b1β1 + 2β0 b2) ln

(
W 2

Q2

)
+ b3

]
+ . . . , (3.36)

and

J̃0

(
W 2

)
= j̃02a

2
s + j̃03a

3
s + . . . , (3.37)

eq. (3.20) yields:

j03 = j̃03 − b1β1 − 2β0b2 . (3.38)

Thus the non-logarithmic term in eq. (3.31) becomes:

− j1β1 − 2β0 j2 + j03 = −(j1 + b1)β1 − 2β0(j2 + b2) + j̃03 , (3.39)

where the part proportional to β1 indeed reproduces5 the correct result (since b1 = 11CF ).

This observation goes beyond what is expected in the large-β0 limit. We also note the j1β1

contribution of the ansatz, which arises from the leading 1/r term in eq. (2.15), matches

the A1β1 term in D3 (paralleling a previous remark concerning the A1β0 term in D2).

4 Two-scale ansatz

At the leading order in 1 − x, there is only one scale involved, namely W 2. In next order,

however, it is possible that, along with W 2, another scale be involved, which would explain

the failure of the previous single scale ansatz. We shall assume this second scale to be

given by the ‘soft’ scale W̃ 2 = (1 − x)2Q2, with the new ansatz:

K(x,Q2) =
1

r
J

(
W 2

)
+

d ln
(
F(Q2)

)2

d ln Q2
δ(1 − x)

+
[(

J̄0

(
W 2

)
− S̄0

(
W̃ 2

))
ln(1 − x) + J0

(
W 2

)
− S0

(
W̃ 2

)]
+ O

(
r ln2 r

)
.

(4.1)

We have:

J̄0

(
W 2

)
= j̄02a

2
s + a3

s

(
− 2j̄02β0 ln

(
W 2

Q2

)
+ j̄03

)

+a4
s

[
3j̄02β

2
0 ln2

(
W 2

Q2

)
− (2β1 j̄02 + 3β0j̄03) ln

(
W 2

Q2

)
+ j̄04

]
+ . . . (4.2)

and

S̄0

(
W̃ 2

)
= s̄02a

2
s + a3

s

(
− 2s̄02β0 ln

(
W̃ 2

Q2

)
+ s̄03

)

+a4
s

[
3s̄02β

2
0 ln2

(
W̃ 2

Q2

)
− (2β1s̄02 + 3β0s̄03) ln

(
W̃ 2

Q2

)
+ s̄04

]
+ . . . (4.3)

5It is not possible with the present information, given j03, to fix in a unique way j̃03 and b2.
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The ‘explicit’ ln(1 − x) term in eq. (4.1) thus yields for x → 1:

(
J̄0

(
W 2

)
− S̄0

(
W̃ 2

))
ln r = a2

s (j̄02 − s̄02) ln(1 − x) (4.4)

+a3
s[−2β0(j̄02 − 2s̄02) ln2(1 − x) + . . .]

+a4
s[3β

2
0(j̄02 − 4s̄02) ln3(1 − x) + . . .] + . . . .

where in the last two lines we have written only the leading logarithms. The new ansatz

has more parameters, and one has to go O(a4
s) to get a non-trivial prediction.

O(a4

s
) exact result: expanding eq. (3.1) to O(a4

s) one gets:

K(x,Q2) = as P0(x) + a2
s[P1(x) − β0 c1(x)]

+a3
s[P2(x) − β1 c1(x) − β0 d2(x)] (4.5)

+a4
s[P3(x) − β2 c1(x) − β1 d2(x) − β0 d3(x)] + . . .

which yields for x → 1 (see appendix C), using the expansions of the ci(x)’s provided

in [13]:

K(x,Q2) ∼
1

r
J

(
Q2(1 − x)

)

+a2
s(16C

2
F ln(1 − x) + . . .) (4.6)

+a3
s(−24C2

F β0 ln2(1 − x) + . . .)

+a4
s

(
88

3
C2

F β2
0 ln3(1 − x) + . . .

)
+ . . .

where in the O(r0) contribution (the last three lines) we have kept only the leading loga-

rithms in each order. Comparing with the corresponding terms (eq. (4.4)) in the two-scales

ansatz eq. (4.1), one gets the relations:

j̄02 − s̄02 = 16C2
F

2(j̄02 − 2s̄02) = 24C2
F (4.7)

3(j̄02 − 4s̄02) =
88

3
C2

F .

Now the first two relations (arising from the O(a2
s) and O(a3

s) contributions) yield: j̄02 =

20C2
F and s̄02 = 4C2

F . However, reporting these values on the left hand side of the third

(O(a4
s)) relation, one gets 3(j̄02−4s̄02) = 12C2

F , instead of the correct value 88
3 C2

F ! Thus, the

two-scales ansatz does not work either. These facts probably indicate failure of threshold

resummation at the O(r0) level, in accordance with the analysis of [7].

Some correct predictions: nevertheless, the ansatz makes a number of correct predic-

tions (see appendix A and C), summarized in table (2).

Similarly to the procedure used at two loop order, one exploits the cancellations implied

by the ansatz in d3(x) to constrain c3(x) given c2(x) and c1(x). We observe that the ansatz

correctly predicts the coefficients of the leading logarithms (LL) for a given color factor

in c3(x), and is again consistent with the general expectation [3] that these coefficients
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C3
F C2

F CA C2
F nf CF β2

0
ln5(1−x)

1−x
8 8 0 0 0 0 0 0

ln5(1 − x) −8 −8 0 0 0 0 0 0
ln4(1−x)

1−x
−30 −30 −220

9 −220
9

40
9

40
9 0 0

ln4(1 − x) 92 92 220

9

220

9
−40

9
−40

9
0 0

ln3(1−x)
1−x

−96ζ2 − 36 −96ζ2 − 36 −32ζ2 + 1732
9 −32ζ2 + 1732

9 −280
9 −280

9
4
3

4
3

ln3(1 − x) 32ζ2 − 38 32ζ2 − 38 64ζ2 − 10976

27
64ζ2 − 1156

3

1832

27
64 −4

3
−4

3

Table 2. Comparison of some exact and predicted 3-loop logarithmic coefficients for the DIS

structure function. Next-to-eikonal results are in boldface. For each color structure, the left column

contains the exact results, the right column contains the prediction of the two-scale ansatz.

are equal and opposite for the lnp(1−x)
1−x

and lnp(1 − x) terms within each color structure.6

We note that these LL predictions depend essentially only upon the validity of the first

equation in (4.7), given the correct leading O(1/r) part of the ansatz.

Moreover, we find that the ansatz also correctly predicts, in term of lower order coef-

ficients, two subleading logarithms (the NLL and the NNLL ones) for the C3
F color factor

which is associated to the highest logarithm in c3(x): this is a genuinely new finding of

the present approach. It is important to note that the prediction of these subleading loga-

rithms in c3(x) relies on the knowledge of the exact soft parts of c1(x) and c2(x), or at least

of those subleading logarithms in their x → 1 expansion which contribute (see appendix

A) to the relevant subleading logarithms in c2(x) ⊗ c1(x) and c⊗3
1 (x). Since subleading

logarithms are involved, these become genuine predictions of the ansatz only if further pa-

rameters are properly adjusted (for instance the second equation in (4.7)) so that relevant

subleading logarithms in c1(x) and c2(x) are correctly reproduced. However, there is no

point of further fixing the ansatz in this way, since not all three relations in (4.7) can be

satisfied anyway, and the ansatz will fail at O(a3
s) as we have seen.

Finally, the ansatz at O(1/r) predicts there should be no C2
F (CA, nf ) ln3(1−x)

1−x
terms

in d3(x). In addition, it predicts that the C2
F (CA, nf ) ln3(1 − x) terms in d3(x) should

combine into a single C2
F β0 ln3(1−x) term, which is indeed realized, but with a coefficient

−36/3 = −12 instead of −88/3, probably signaling a failure of threshold resummation at

the O(r0) level. The resulting approximate predictions for the C2
F (CA, nf ) ln3(1−x) terms

in c3(x) are also displayed in table (2).

5 Comment on reference [6]

Setting Q2 = µ2
F in the lower limit of the second integral in the large N exponentiation

ansatz eq. (37) of [6] yields in our notation:

ln[Ĉ2(Q
2, N, µ2

F )] = (N − independent term) +

∫ 1

0
dxxN−1

[
1

1 − x
B(as(rQ

2))

+

∫ rQ2

µ2
F

dk2

k2
P (x, as(k

2)) +

∫ rQ2

r̃Q2

dk2

k2
δP (x, as(k

2))

]
, (5.1)

6The CA and nf factors combine into a single β0 factor for leading logarithms, e.g. C2
F β0 for p = 4 and

CF β2
0 for p = 3.
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where r ≡ 1−x
x

, r̃ ≡ (1−x)2

x
and P (x, as)+δP (x, as) is the time-like (fragmentation) splitting

function. Taking the ln Q2 derivative of eq. (5.1), one gets for N → ∞:

d ln[Ĉ2(Q
2, N, µ2

F )]

d ln Q2
=

∫ 1

0
dxxN−1

[
P (x, as(rQ

2)) + δP (x, as(rQ
2)) − δP (x, as(r̃Q

2))

+
1

1 − x
β(as(rQ

2))
dB(as(rQ

2))

das

]
(5.2)

where we neglected N -independent terms related to the quark form factor (see eq. (2.12))

outside the integral. Setting (cf. eq. (39) in [6]):

δP (x, as) = δC(as) ln(1 − x) + δD(as) (5.3)

where δC(as) =
∑∞

i=2 δCia
i
s and δD(as) =

∑∞
i=2 δDia

i
s, and using eq. (3.28), eq. (5.2)

yields:

K̂(Q2, N) ≡
d ln[Ĉ2(Q

2, N, µ2
F )]

d ln Q2
(5.4)

=

∫ 1

0
dxxN−1

[
1

r
J (rQ2)

+[C(as(rQ
2)) + δC(as(rQ

2)) − δC(as(r̃Q
2))] ln(1 − x)

+D(as(rQ
2)) + δD(as(rQ

2)) + β(as(rQ
2))

dB(as(rQ
2))

das

−δD(as(r̃Q
2))

]
,

where the B-term on the fourth line arises because in the ansatz of [6] the prefactor of the

B-term in eq. (5.1) is chosen to be 1/(1−x) rather then 1/r = x/(1−x) as in the splitting

function. Eq. (5.5) implies that in momentum space the ansatz of [6] yields for x → 1:

K(x,Q2) =
1

r
J (rQ2) + [C(as(rQ

2)) + δC(as(rQ
2)) − δC(as(r̃Q

2))] ln(1 − x) (5.5)

+D(as(rQ
2)) + δD(as(rQ

2)) + β(as(rQ
2))

dB(as(rQ
2))

das
− δD(as(r̃Q

2)) .

Comparing with eq. (4.1), we deduce that the ansatz of [6] is a particular two-scale ansatz,

with:

J̄0

(
W 2

)
= C

(
as

(
W 2

))
+ δC

(
as

(
W 2

))
(5.6)

J0

(
W 2

)
= D

(
as

(
W 2

))
+ δD

(
as

(
W 2

))
+ β(as(W

2))
dB(as(W

2))

das

and

S̄0

(
W̃ 2

)
= δC

(
as

(
W̃ 2

))
(5.7)

S0

(
W̃ 2

)
= δD

(
as

(
W̃ 2

))
,
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where we redefined W̃ 2 = r̃Q2. The approach of [6] has the merit to provide a physical

justification for the two-scale ansatz. Moreover, this ansatz yields: j̄02 = −16C2
F and s̄02 =

−32C2
F . It is interesting that the first relation in eq. (4.7) is thus satisfied by the ansatz,

but not the other two (we have seen above that no two-scale ansatz can satisfy all three

relations eq. (4.7) anyway, which presumably signals a failure of threshold resummation at

the O(r0) ‘next-to-eikonal’ level).

We further observe that the correct predictions of the ansatz of [6], which all concern

the leading O(r0) logarithms for a given color factor, can be obtained for any two-scale

ansatz which satisfy the first relation in eq. (4.7) (which guarantees the correct leading

logarithms in c1(x)), and such that j̄02 and s̄02 carry only the C2
F color factor, as follows

from the analysis of section 4. In particular, they are also obtained by the single-scale

ansatz (s̄0i ≡ 0).

Another limitation of the ansatz [6] is that it tries to resum next-to-eikonal logarithms

simply by including next-to-eikonal terms in the splitting functions alone. This procedure

is however presumably renormalization scheme dependent beyond leading order, and one

should also include7 the analogue of the B-term in eq. (5.2) at the next-to-eikonal level

(see eq. (3.30)). In particular, one can check it does not account properly for the large-β0

non-logarithmic terms (see eq. (3.19)), which are known [4] to exponentiate, i.e. satisfy the

single-scale ansatz.

6 Concluding remarks

The present approach shows that threshold resummation either through a single scale,

or a two-scale ansatz does not work exactly beyond leading order in 1/r (except in the

large-β0 limit), although these ansaetze do suggest a number of correct predictions for

next-to-eikonal logarithms, indicating only a ‘partial failure’ of threshold resummation at

the next-to-eikonal level. Inspired by the analysis of [7], let us assume instead that the

physical evolution kernel can be split into the sum of two pieces:

K(x,Q2) = Kexp(x,Q2) + Knexp(x,Q2) (6.1)

where only the first piece Kexp(x,Q2) is assumed to have the structure given by (e.g.)

the two-scale ansatz eq. (4.1). Then the relations observed in section 3 can be ‘explained’

by assuming that the remainder piece Knexp(x,Q2) has the following color factors and

logarithmic structure in an expansion in as(Q
2):

Knexp(x,Q2) = [k1C
2
F ln(1 − x) + k

′

1C
2
F ]a2

s

+[k2 C2
F β0 ln2(1 − x) + O(ln(1 − x))]a3

s (6.2)

+[k3 C2
F β2

0 ln3(1 − x) + O(ln2(1 − x))]a4
s + O(a5

s)

7Actually the ansatz of [6] does yield a B-term in J0 (see eq. (5.6)). As mentioned in the text, this is

due to the use of the prefactor 1/(1 − x) instead of 1/r for the B-term in eq. (5.1). However, there is no

reason why the B-term associated to the sub-leading J0 function should be the same as the one associated

to J in eq. (2.10).

– 14 –



J
H
E
P
1
0
(
2
0
0
9
)
0
5
5

where the ki’s and k
′

1 are pure numbers (and eventually k1, and even also k
′

1, may vanish,

i.e. Knexp(x,Q2) = O(a3
s)). Indeed, the cancellation of higher logarithms observed in the

combinations di(x) is guaranteed by (6.2), since (as we have seen) these logarithms cannnot

be present in the threshold resummed part Kexp(x,Q2), and are excluded by assumption

from the threshold resummation violating part Knexp(x,Q2). Further study is required to

identify Knexp(x,Q2), and one may in particular wonder whether the violation of threshold

resummation in the physical kernel K(x,Q2) could be entirely attributed to the coefficient

functions ci(x) (i ≥ 2) in eq. (4.5), while the splitting functions Pi(x) themselves would

‘exponentiate’, i.e. would contribute only to Kexp(x,Q2) (which would justify in particular

the assumption that k1 = k
′

1 = 0, since c1(x) itself does belong to Kexp(x,Q2), as shown [4]

by the large-β0 analysis).

Using the results in [13], we have carried a similar investigation for the F3 structure

function (there is no difference [13] between the F3 and F1 coefficient functions up to terms

which vanish for x → 1). Quite analogous results are obtained (see appendix D). Moreover

the following interesting fact emerged: although the O(r0) next-to-eikonal logarithms differ

between the F2 and F3 coefficient functions (at the difference of the +-distributions), we

found that, up to three loop, the leading next-to-eikonal logarithms are the same for the

F2 and F3 physical evolution kernels (i.e. for the ‘logarithmic derivative’ coefficients di(x)):

see eq. (B.3) and (D.4), and eq. (C.18) and (D.22). It is natural to wonder whether this

feature persists beyond three loop. The present approach can also be applied to predict

some next-to-eikonal logarithms at four loop order. A similar study in the Drell-Yan case

should also be performed [26].

Note added: after the first version of this paper has been completed, we noticed the pa-

per [27], where similar methods are used to deal with the FL structure function. Moreover,

the paper [28] appeared, which deals with similar issues.
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A Relevant terms in the expansions of c
⊗2

1
(x), c

⊗3

1
(x), and c2(x) ⊗ c1(x)

in parametric form

Writing the soft parts of c1(x) and c2(x) as:

c1(x) = d11
ln(1 − x)

1 − x
+ d10

1

1 − x
+ d1d δ(1 − x) + b11 ln(1 − x) + b10 (A.1)

and:

c2(x) = d23
ln3(1 − x)

1 − x
+ d22

ln2(1 − x)

1 − x
+ d21

ln(1 − x)

1 − x
+ d20

1

1 − x
+ d2d δ(1 − x)

+b23 ln3(1 − x) + b22 ln2(1 − x) + b21 ln(1 − x) + b20 (A.2)
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(where the lnp(1 − x)/(1 − x) terms should be understood as +-distributions), their con-

volutions are found to be:

c⊗2
1 (x) = d2

11

ln3(1 − x)

1 − x
+ 3d11d10

ln2(1 − x)

1 − x

+(−2ζ2d
2
11 + 2d11d1d + 2d2

10)
ln(1 − x)

1 − x
+ . . .

+d11b11 ln3(1 − x) + (d11b10 + d2
11 + 2d10b11) ln2(1 − x)

+(−2ζ2d11b11 + 2d11d10 + 2d10b10 + 2d1db11) ln(1 − x) + . . . (A.3)

c⊗3
1 (x) =

3

4
d3
11

ln5(1 − x)

1 − x
+

15

4
d2
11d10

ln4(1 − x)

1 − x

+(−6ζ2d
3
11 + 6d11d

2
10 + 3d2

11d1d)
ln3(1 − x)

1 − x
+ . . .

+
3

4
d2
11b11 ln5(1 − x) +

(
3d11d10b11 +

3

4
d2
11b10 +

3

2
d3
11

)
ln4(1 − x) (A.4)

+(−6ζ2d
2
11b11+3d11d10b10+3d11d1db11+6d2

11d10+3d2
10b11) ln3(1−x) +. . .

c2(x) ⊗ c1(x) =
3

4
d23d11

ln5(1 − x)

1 − x
+

(
5

4
d23d10 +

5

6
d22d11

)
ln4(1 − x)

1 − x

+

(
− 4ζ2d23d11 + d23d1d +

4

3
d22d10 + d21d11

)
ln3(1 − x)

1 − x
+ . . .

+

(
1

4
d23b11 +

1

2
d11b23

)
ln5(1 − x) (A.5)

+

(
d23d11 +

1

4
d23b10 +

1

3
d22b11 +

1

2
d11b22 + d10b23

)
ln4(1 − x)

+

(
− ζ2d23b11 − 3ζ2d11b23 + d23d10 + d22d11 +

1

3
d22b10 +

1

2
d21b11

+
1

2
d11b21 + d10b22 + d1db23

)
ln3(1 − x) + . . .

where for simplicity only terms relevant for the calculations in appendix B, C and D have

been written down. In particular these expansions imply, looking at the leading logarithms

for a given color structure:

1) d2(x) ≡ 2c2(x) − c⊗2
1 (x)

⊃ (2d23 − d2
11)

ln3(1 − x)

1 − x
+ (2b23 − d11b11) ln3(1 − x) . (A.6)

Requiring the coefficients of the logarithms in eq. (A.6) to vanish then yield the

leading logarithm prediction:

b23 = −d23 = −
1

2
d2
11 (A.7)

where the relation

b11 = −d11 (A.8)

has been assumed.
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2) Writing the soft part of c3(x) as:

c3(x) = d35
ln5(1 − x)

1 − x
+ d34

ln4(1 − x)

1 − x
+ d33

ln3(1 − x)

1 − x
+ . . .

+b35 ln5(1 − x) + b34 ln4(1 − x) + b33 ln3(1 − x) + . . . , (A.9)

one gets:

(i) d3(x) ≡ 3 c3(x) − 3 c2(x) ⊗ c1(x) + c⊗3
1 (x)

⊃

(
3 d35 −

3

8
d3
11

)
ln5(1 − x)

1 − x
+

(
3 b35 +

3

8
d3
11

)
ln5(1 − x) , (A.10)

where eq. (A.7) and (A.8) have been used. Requiring the coefficients of the

logarithms in eq. (A.10) to vanish then yield the leading logarithm prediction:

b35 = −d35 = −
1

8
d3
11 . (A.11)

(ii) For the quartic logarithms, retaining only those coefficients which contribute to

the C2
F β0 color factor, and assuming that d11 carries only the CF color factor,

one gets:

d3(x) ⊃

(
3 dLL

34 −
5

2
dLL
22 d11

)
ln4(1 − x)

1 − x
+

(
3 bLL

34 +
5

2
dLL
22 d11

)
ln4(1−x) , (A.12)

where dLL
34 and bLL

34 are the parts of d34 and b34 which belong to the C2
F β0 color

factor, and we assumed eq. (A.7), (A.8), as well as the relation:

bLL
22 = −dLL

22 , (A.13)

where dLL
22 and bLL

22 are the parts of d22 and b22 which belong to the CF β0 color

factor. Requiring the coefficients of the logarithms in eq. (A.12) to vanish then

yield the leading logarithm prediction for the C2
F β0 color factor:

bLL
34 = −dLL

34 = −
5

6
dLL
22 d11 . (A.14)

B Relevant terms in the expansions of c2(x) and c
⊗2

1
(x) (F2 structure

function)

We use the results, valid for x → 1:

c2(x) = 8 C2
F

ln3(1 − x)

1 − x
− 8 C2

F ln3(1 − x)

−18 C2
F

ln2(1 − x)

1 − x
+ 60 C2

F ln2(1 − x)

−2 CF β0
ln2(1 − x)

1 − x
+ 2 CF β0 ln2(1 − x) (B.1)

+

(
16

3
− 8ζ2

)
CF CA

ln(1 − x)

1 − x
+

(
−

34

3
+ 24ζ2

)
CF CA ln(1 − x)

– 17 –



J
H
E
P
1
0
(
2
0
0
9
)
0
5
5

−(27 + 32ζ2)C
2
F

ln(1 − x)

1 − x
+ 20C2

F ln(1 − x)

+
29

3
CF β0

ln(1 − x)

1 − x
−

74

3
CF β0 ln(1 − x) + . . .

(where we have expressed nf in term of β0 and CA), and

c⊗2
1 (x) = 16 C2

F

ln3(1 − x)

1 − x
− 16 C2

F ln3(1 − x)

−36 C2
F

ln2(1 − x)

1 − x
+ 96 C2

F ln2(1 − x) (B.2)

−(54 + 64ζ2)C
2
F

ln(1 − x)

1 − x
+ (−36 + 64ζ2)C

2
F ln(1 − x) + . . . .

These expansions imply for r → 0 (using 1
1−x

= 1
r

+ 1):

d2(x) = −4 CF β0
ln2(1 − x)

r
+ 24 C2

F ln2(1 − x) (B.3)

+

(
32

3
− 16ζ2

)
CF CA

ln(1 − x)

r
+ (−12 + 32ζ2)CF CA ln(1 − x)

+0 × C2
F

ln(1 − x)

r
+ (76 − 64ζ2)C

2
F ln(1 − x)

+
58

3
CF β0

ln(1 − x)

r
− 30CF β0 ln(1 − x) + . . . .

C Relevant terms in the expansions of c3(x), c2(x) ⊗ c1(x) and c
⊗3

1
(x)

(F2 structure function)

For x → 1, one gets:

1) c3(x) ⊃ 8 C3
F

ln5(1 − x)

1 − x
− 8 C3

F ln5(1 − x) (C.1)

c2(x) ⊗ c1(x) ⊃ 24 C3
F

ln5(1 − x)

1 − x
− 24 C3

F ln5(1 − x) (C.2)

c⊗3
1 (x) ⊃ 48 C3

F

ln5(1 − x)

1 − x
− 48 C3

F ln5(1 − x) (C.3)

which imply the C3
F

ln5(1−x)
1−x

and C3
F ln5(1−x) terms cancel in d3(x) (note this relation

concerns leading logarithms for the color factor C3
F ).

2) c3(x) ⊃ −30 C3
F

ln4(1 − x)

1 − x
+ 92 C3

F ln4(1 − x) (C.4)

c2(x) ⊗ c1(x) ⊃ −90 C3
F

ln4(1 − x)

1 − x
+ 228 C3

F ln4(1 − x) (C.5)

c⊗3
1 (x) ⊃ −180C3

F

ln4(1 − x)

1 − x
+ 408 C3

F ln4(1 − x) (C.6)

which imply the C3
F

ln4(1−x)
1−x

and C3
F ln4(1−x) terms cancel in d3(x) (note this relation

concerns non-leading logarithms for the color factor C3
F ).
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3) c3(x) ⊃ −C3
F (96 ζ2 + 36)

ln3(1 − x)

1 − x
+ C3

F (32 ζ2 − 38) ln3(1 − x) (C.7)

c2(x) ⊗ c1(x) ⊃ − C3
F (288 ζ2 + 108)

ln3(1 − x)

1 − x
+ C3

F (224 ζ2 − 194) ln3(1 − x) (C.8)

c⊗3
1 (x) ⊃ −C3

F (576 ζ2 + 216)
ln3(1 − x)

1 − x
+ C3

F (576 ζ2 − 468) ln3(1 − x) (C.9)

which imply the C3
F

ln3(1−x)
1−x

and C3
F ln3(1− x) terms cancel in d3(x) (note again this

relation concerns non-leading logarithms for the color factor C3
F ).

4) c3(x) ⊃ −
20

3
C2

F β0
ln4(1 − x)

1 − x
+

20

3
C2

F β0 ln4(1 − x) (C.10)

c2(x) ⊗ c1(x) ⊃ −
20

3
C2

F β0
ln4(1 − x)

1 − x
+

20

3
C2

F β0 ln4(1 − x) (C.11)

which imply the C2
F β0

ln4(1−x)
1−x

and C2
F β0 ln4(1−x) terms cancel in c3(x)−c2(x)⊗c1(x),

hence also in d3(x) (c⊗3
1 (x) has no C2

F β0 color factor). Note this relation concerns

leading logarithms for the color factors C2
F (nf , CA), which combine into a single C2

F β0

color factor in c3(x) and c2(x) ⊗ c1(x).

5) c3(x) ⊃ C2
F

[
−

280

9
nf +

(
− 32ζ2 +

1732

9

)
CA

]
ln3(1 − x)

1 − x

+C2
F

[
1832

27
nf +

(
64ζ2 −

10976

27

)
CA

]
ln3(1 − x) (C.12)

c2(x) ⊗ c1(x) ⊃ C2
F

[
−

280

9
nf +

(
− 32ζ2 +

1732

9

)
CA]

ln3(1 − x)

1 − x

+C2
F

[
184

3
nf +

(
64ζ2 −

1112

3

)
CA

]
ln3(1 − x) (C.13)

which imply the C2
F (nf , CA) ln3(1−x)

1−x
terms cancel in c3(x) − c2(x) ⊗ c1(x) (note this

relation concerns non-leading logarithms for the color factors C2
F (nf , CA)), hence

also in d3(x) (c⊗3
1 (x) has no C2

F (nf , CA) color factor). Moreover one finds the

C2
F (nf , CA) ln3(1 − x) terms in d3(x) (but not in c3(x)!) combine into a single term

proportional to C2
F β0:

d3(x) ⊃ 0 × C2
F (nf , CA)

ln3(1 − x)

1 − x
−

88

3
C2

F β0 ln3(1 − x) (C.14)

6) c3(x) ⊃
4

3
CF β2

0

ln3(1 − x)

1 − x
−

4

3
CF β2

0 ln3(1 − x) (C.15)

which imply , for r → 0 (using 1
1−x

= 1
r

+ 1):

c3(x) ⊃
4

3
CF β2

0

ln3(1 − x)

r
+ 0 × CF β2

0 ln3(1 − x) (C.16)

(note this relation concerns leading logarithms for the color factors CF (n2
f , nfCA, C2

A),

which combine into a single CF β2
0 color factor), hence (since there is no CF β2

0 color

factor in c2(x) ⊗ c1(x) and c⊗3
1 (x)):

d3(x) ⊃ 4 CF β2
0

ln3(1 − x)

r
+ 0 × CF β2

0 ln3(1 − x) (C.17)
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Combining eq. (C.14) and (C.17), we thus find the leading logarithms in d3(x) for

r → 0 are given by:

d3(x) ⊃ 4 CF β2
0

ln3(1 − x)

r
−

88

3
C2

F β0 ln3(1 − x) (C.18)

D Relevant terms in the expansions of c1(x), c2(x), c
⊗2

1
(x), c3(x), c2(x)⊗

c1(x) and c
⊗3

1
(x) (F3 structure function)

Two loop results: for x → 1 we have:

c1(x)|F3 = CF

[
4 ln(1 − x) − 3

1 − x
− (9 + 4ζ2)δ(1 − x) − 4 ln(1 − x) + 10 + . . .

]
. (D.1)

Moreover:

c2(x)|F3 = 8 C2
F

ln3(1 − x)

1 − x
− 8 C2

F ln3(1 − x)

−18 C2
F

ln2(1 − x)

1 − x
+ 52 C2

F ln2(1 − x)

−2 CF β0
ln2(1 − x)

1 − x
+ 2 CF β0 ln2(1 − x) (D.2)

+

(
16

3
− 8ζ2

)
CF CA

ln(1 − x)

1 − x
+

(
14

3
+ 8ζ2

)
CF CA ln(1 − x)

−(27 + 32ζ2)C
2
F

ln(1 − x)

1 − x
− (16 − 32ζ2)C

2
F ln(1 − x)

+
29

3
CF β0

ln(1 − x)

1 − x
−

62

3
CF β0 ln(1 − x) + . . .

(where we have expressed nf in term of β0 and CA), and

c⊗2
1 (x)|F3 = 16 C2

F

ln3(1 − x)

1 − x
− 16 C2

F ln3(1 − x)

−36 C2
F

ln2(1 − x)

1 − x
+ 80 C2

F ln2(1 − x) (D.3)

−(54 + 64ζ2)C
2
F

ln(1 − x)

1 − x
+ (−12 + 64ζ2)C

2
F ln(1 − x) + . . . .

These expansions imply for r → 0 (using 1
1−x

= 1
r

+ 1):

d2(x)|F3 = −4 CF β0
ln2(1 − x)

r
+ 24 C2

F ln2(1 − x) (D.4)

+

(
32

3
− 16ζ2

)
CF CA

ln(1 − x)

r
+ 20CF CA ln(1 − x)

+0 × C2
F

ln(1 − x)

r
− 20C2

F ln(1 − x)

+
58

3
CF β0

ln(1 − x)

r
− 22CF β0 ln(1 − x) + . . . .

We observe the leading logarithms on the right hand sides of eq. (B.3) and (D.4)

are identical.
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Three loop results: for x → 1 we have:

1) c3(x)|F3 ⊃ 8 C3
F

ln5(1 − x)

1 − x
− 8 C3

F ln5(1 − x) (D.5)

c2(x)|F3 ⊗ c1(x)|F3 ⊃ 24 C3
F

ln5(1 − x)

1 − x
− 24 C3

F ln5(1 − x) (D.6)

c⊗3
1 (x)|F3 ⊃ 48 C3

F

ln5(1 − x)

1 − x
− 48 C3

F ln5(1 − x) (D.7)

which imply the C3
F

ln5(1−x)
1−x

and C3
F ln5(1 − x) terms cancel in d3(x)|F3 (note this

relation concerns leading logarithms for the color factor C3
F ).

2) c3(x)|F3 ⊃ −30 C3
F

ln4(1 − x)

1 − x
+ 84 C3

F ln4(1 − x) (D.8)

c2(x)|F3 ⊗ c1(x)|F3 ⊃ −90 C3
F

ln4(1 − x)

1 − x
+ 204 C3

F ln4(1 − x) (D.9)

c⊗3
1 (x)|F3 ⊃ −180C3

F

ln4(1 − x)

1 − x
+ 360 C3

F ln4(1 − x) (D.10)

which imply the C3
F

ln4(1−x)
1−x

and C3
F ln4(1 − x) terms cancel in d3(x)|F3 (note this

relation concerns non-leading logarithms for the color factor C3
F ).

3) c3(x)|F3 ⊃−C3
F (96ζ2+36)

ln3(1−x)

1 − x
+ C3

F (96ζ2−110) ln3(1−x) (D.11)

c2(x)|F3⊗c1(x)|F3 ⊃−C3
F (288 ζ2+108)

ln3(−x)

1−x
+C3

F (288ζ2−218) ln3(1−x) (D.12)

c⊗3
1 (x)|F3 ⊃−C3

F (576ζ2 + 216)
ln3(1−x)

1−x
+C3

F (576ζ2−324) ln3(1−x)(D.13)

which imply the C3
F

ln3(1−x)
1−x

and C3
F ln3(1 − x) terms cancel in d3(x)|F3 (note again

this relation concerns non-leading logarithms for the color factor C3
F ).

4) c3(x)|F3 ⊃ −
20

3
C2

F β0
ln4(1 − x)

1 − x
+

20

3
C2

F β0 ln4(1 − x) (D.14)

c2(x)|F3 ⊗ c1(x)|F3 ⊃ −
20

3
C2

F β0
ln4(1 − x)

1 − x
+

20

3
C2

F β0 ln4(1 − x) (D.15)

which imply the C2
F β0

ln4(1−x)
1−x

and C2
F β0 ln4(1−x) terms cancel in c3(x)|F3−c2(x)|F3⊗

c1(x)|F3, hence also in d3(x)|F3 (c⊗3
1 (x)|F3 has no C2

F β0 color factor). Note this

relation concerns leading logarithms for the color factors C2
F (nf , CA), which combine

into a single C2
F β0 color factor in c3(x)|F3 and c2(x)|F3 ⊗ c1(x)|F3.

5) c3(x)|F3 ⊃ C2
F

[
−

280

9
nf +

(
− 32ζ2 +

1732

9

)
CA

]
ln3(1 − x)

1 − x

+C2
F

[
1640

27
nf +

(
32ζ2 −

9056

27

)
CA

]
ln3(1 − x) (D.16)

c2(x)|F3 ⊗ c1(x)|F3 ⊃ C2
F

[
−

280

9
nf +

(
− 32ζ2 +

1732

9

)
CA

]
ln3(1 − x)

1 − x

+C2
F

[
488

9
nf +

(
32ζ2 −

2696

9

)
CA

]
ln3(1 − x) (D.17)
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which imply the C2
F (nf , CA) ln3(1−x)

1−x
terms cancel in c3(x)|F3 − c2(x)|F3 ⊗ c1(x)|F3

(note this relation concerns non-leading logarithms for the color factors C2
F (nf , CA)),

hence also in d3(x)|F3 (c⊗3
1 (x)|F3 has no C2

F (nf , CA) color factor). Moreover one

finds the C2
F (nf , CA) ln3(1−x) terms in d3(x)|F3 (but not in c3(x)|F3!) combine into

a single term proportional to C2
F β0:

d3(x)|F3 ⊃ 0 × C2
F (nf , CA)

ln3(1 − x)

1 − x
−

88

3
C2

F β0 ln3(1 − x) (D.18)

6) c3(x)|F3 ⊃
4

3
CF β2

0

ln3(1 − x)

1 − x
−

4

3
CF β2

0 ln3(1 − x) (D.19)

which imply , for r → 0 (using 1
1−x

= 1
r

+ 1):

c3(x)|F3 ⊃
4

3
CF β2

0

ln3(1 − x)

r
+ 0 × CF β2

0 ln3(1 − x) (D.20)

(note this relation concerns leading logarithms for the color factors CF (n2
f , nfCA, C2

A),

which combine into a single CF β2
0 color factor), hence (since there is no CF β2

0 color

factor in c2(x)|F3 ⊗ c1(x)|F3 and c⊗3
1 (x)|F3):

d3(x)|F3 ⊃ 4 CF β2
0

ln3(1 − x)

r
+ 0 × CF β2

0 ln3(1 − x) . (D.21)

Combining eq. (D.18) and (D.21), we thus find the leading logarithms in d3(x)|F3 for

r → 0 are given by:

d3(x)|F3 ⊃ 4 CF β2
0

ln3(1 − x)

r
−

88

3
C2

F β0 ln3(1 − x) (D.22)

We observe the right hand sides of eq. (C.18) and (D.22) are identical.
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